Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness.
نویسندگان
چکیده
Formation of the CNS white matter is developmentally tightly regulated, but the molecules and mechanisms of myelination control in the postnatal CNS are poorly understood. Here, we show that myelin growth is controlled by fibroblast growth factor (FGF) signaling, originally identified as a proliferative signal for oligodendrocyte precursor cells (OPCs) in vitro. We created two lines of mice lacking both FGF receptor 1 (Fgfr1) and Fgfr2 in oligodendrocyte-lineage cells but found that in these mice OPC proliferation and differentiation were unaffected. In addition, axonal ensheathment and the initiation of myelination were on time. However, the rapid growth of CNS myelin, normally occurring in the second postnatal week, was strongly inhibited. Throughout adulthood, the myelin sheath remained disproportionately thin relative to the axon caliber. In adult mice, mutant oligodendrocytes were normal in number, whereas the transcription of major myelin genes was reduced. This FGF receptor-mediated stimulation of mature oligodendrocytes could also be modeled in vitro, demonstrating that enhanced expansion of oligodendroglial processes requires signaling by extracellular signal regulated kinase-1 and -2 (Erk1/2), downstream mediators of mitogen-activated protein kinase (MAPK). In vivo, Erk1/2-MAPK activity was reduced in the hypomyelinated CNS of Fgfr1/Fgfr2 mutant mice. These studies reveal a previously unrecognized function of FGF receptor signaling in oligodendrocytes that contributes to the regulation of myelin sheath thickness and that uncouples the initiation of ensheathment from the later phase of continued myelin growth.
منابع مشابه
9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination.
Wrapping of the myelin sheath around axons by oligodendrocytes is critical for the rapid conduction of electrical signals required for the normal functioning of the CNS. Myelination is a multistep process where oligodendrocytes progress through a well coordinated differentiation program regulated by multiple extracellular growth and differentiation signals. The intracellular transduction of the...
متن کاملNeuregulin-1/ErbB Signaling Serves Distinct Functions in Myelination of the Peripheral and Central Nervous System
Understanding the control of myelin formation by oligodendrocytes is essential for treating demyelinating diseases. Neuregulin-1 (NRG1) type III, an EGF-like growth factor, is essential for myelination in the PNS. It is thus thought that NRG1/ErbB signaling also regulates CNS myelination, a view suggested by in vitro studies and the overexpression of dominant-negative ErbB receptors. To directl...
متن کاملOligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in regulating CNS myelination. BDNF mutant mice exhibit a hypomyelinating phenotype, and BDNF exerts distinct effects upon oligodendroglial proliferation, differentiation, and myelination in vitro. To investigate the precise influence that BDNF exerts in regulating CNS myelination in vivo, we have generated conditiona...
متن کاملDistinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage.
Fibroblast growth factors (FGFs) have been implicated in numerous cellular processes, including proliferation, migration, differentiation, and survival. Whereas FGF-2, the prototypic ligand in a family of 22 members, activates all four tyrosine kinase FGF receptors (FGFR1-FGFR4), other members demonstrate a higher degree of selectivity. Oligodendrocytes (OLs), the myelin-producing cells of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2012